InternetCAR

Masaaki Sato saikawa@sfc.wide.ad.jp

Background and Motivation

- "Give and Take" basis helps society.
 - ➔ Automobile has more than one hundred sensors.
 - ➔ If we can collect these data, useful information can be provided.
 - This kind of application is called as Probe Car/Floating Car system
- Frontline base is necessary in emergency situation.
 - Automobile can move, has battery, can bring heavy/large equipments.
 - ➔ "Communication" is most important capability.

Internet supports Automobiles

• Various Services, Various Value

- Driver/Passenger

- Driving Assist (Safety, Routing)
- Amusement (Music, Movie, Communication.
- Payment (Toll Gate, Drive-through...)
- Remote Diagnosis

Traffic manager/Society

- Various information (ex. floating car)
- Road maintenance
- Environmental survey(CO2 control)
- Taxi/bus management(location service):better transportation services
- Marketing/Advertisement distributions

InternetITS Architecture

Open and seamless platform by IPv6

Separation of communication (media) and service

Many players participate at low cost.

History of InternetCAR Project

	Internet CAR(WIDE)			IPCar(JSK)			Internet ITS		
FY	1996	1997	1998	1999	2000	2001	2001	2002	2003
Charact eristic	First testing	Introducing Mobile IPv4	Development of On-board system	Possibility check of Probe Car system	Feasibility study of Probe Car system	Improving accuracy of Probe Car system	Introducing IPv6, Design of Internet ITS Platform	Joint work of more than hundred	Interopera bility check
# of Cars	1	7	10	10	270	270	1640	organizatio	1490+30
Locatio n	Fujisawa	Fujisawa	Fujisawa, Nara,	Kouhoku	Yokohama	Yokohama	Nagoya, Kawasaki	Nagoya	Nagoya, Yokohama
Type of Car	• Test Car	• Passenger car	⊌\$Preidesste rAger car	• Test car	 Taxi Bus Commerci al car Truck 	• Taxi • Bus	• Taxi • Passenger car	• Taxi	• Taxi • Bus
On- board system	•PC	Note PC	• sic2000	 Proprietary system 	 Proprietary system 	 Proprietary system 	 Proprietary system 	 Proprietar y system 	 Proprietar y system MR+IPv6 Sensors
Retrieved Informatio n	LocationSpeedWipreLight	LocationSpeedWiper	 Location Speed Wiper 	LocationSpeedWiper	•Location •Speed •Wiper	 Location Speed Winkers Side break 	 Location Speed Wiper Hired/Vacant 	•Location •Speed	 Location Speed Camera Temp. Humidity Accelerati
Communi cation Media	•PDC-P	•PDC-P •PHS •Wireless	•PDC-P •Wireless LAN	•PDC-P	•PDC-P	•PDC-P	PDC-P, cdma1x, PHS, PHS-DATA, WiFi, DSRC	●PDC-P ●SWIFTCO M	ФРДС-Р •₩iฅker •PHS-

Testing Environment

MR and IPv6 Sensor

IPv6 based on-bard equipment

Vehicle information can be retrieved using SNMP/IPv6

Testing Environment

WiFi Antenna

Mobile Router (OS:

location information from GPS

map creation by excursion of Automobile (from GPS sensor)

Generation of Emergency indication by Probe Car system

"the Slip hazard map" from vehicle's ABS signal

- Activation of anti-lock braking system (ABS), which indicates slippery (black ice/poor road traction/dangerous) place.
- It is possible to generate "the Slip hazard map" by collecting "activation of ABS" through the Internet from many vehicles with a position.
- We experimented in the test course using two probe vehicles.

experimental vehicle 1(MAZDA)

experimental vehicle 2(SUBARU)

Data architecture

- Service Platform: 'Data Dictionary.
 - Vehicle Information Interface
 - Unified information gathering independent of vehicle type
 - Can easy use vehicle information from the outside/inside
 - "name" always means one unique unit(format)
 - Standardization: ISO/TC204/WG16

Information of acquisition from vehicle

Basic info (from IP Sensors)					
Temperature					
Humidity					
Latitude					
Longitude					
Altitude					
Direction					
Acceleration (front - rear)					
Acceleration (left - right)					

8 info

Vehicle 1 (mazda)
Battery voltage
Velocity
Engine rpm
Acceleration pedal maneuver(%)
Cooling Water temperature
Intake Air temperature
Activation of ABS
Activation of parking-brake
Head light status(4steps)
Wiper status(4steps)
Activation of door open sensor
Gear Position

Vehicle 2(SUBARU)
Battery voltage
Velocity
Engine rpm
Acceleration pedal maneuver(%)
Cooling Water temperature
Intake Air temperature
Activation of ABS
Activation of parking-brake
Head light status(4steps)
Wiper status(4steps)
Activation of door open sensor
Gear Position
Activation of Air-bag system
Activation of seat belt sensor
Ignition status
Activation of seat sensor
Activation of Hazard lamp

(8) + 17 = 25 info

ABS information from vehicle connector (OBD-II and CAN: Controller Area Network)

slippery course

Experimentation

Result(All the collected information)

• vehicle 1

• vehicle 2

1402322

1402323

1402324

ABS signal on 10km/h

3 rounds by 10km/h

ABS signal on 20km/h

Composition of collected information

vehicle 1 information

vehicle 2 information

Conclusion

- Since 1996, the InternetCAR WG have worked on connecting vehicles to the Internet and building a communication infrastructure.
- Network Mobility is the mobility support technology to connect vehicles to the Internet.
 - MR supporting Network Mobility assigns a permanent mobile network prefix to the vehicle and leads the vehicle network without awareness of its visited network changes.
- Data-dictionary-model makes it possible to normalize the average error and accuracy of car-information.
- Result of our feasibility study in Slippery Circuit
 - It has been confirmed that gathered ABS signal from different two vehicles to "the Slip hazard map" could be created.